314

Bibliography

9

M. Bardi and I. Capuzzo-Dolcetta, (2008)

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Basel, 2008.

10

D. Bichara and C. Castillo-Chavez, (2016)

Vector-borne diseases models with residence times - A Lagrangian perspective, Math Biosci, 281:128-138, 2016.

11

D. Bichara and A. Iggidr, (2018)

Multi-patch and multi-group epidemic models: a new framework, J Math Biol, 77:107-134, 2018.

12

L. Billings, I. B. Schwartz, L. B. Shaw, M. McCrary, D. S. Burke, and D. A. T., Cummings, (2007)

Instabilities in multiserotype disease models with antibody-dependent enhancement. J Theor Biol, 246:18-27, 2007.

13

B. Buonomo, N. Chitnis, and A. d’Onofrio, (2018)

Seasonality in epidemic models: a literature review. Ricerche mat, 67:7-25, 2018.

14

B. Buonomo and R. Della Marca, (2018)

Optimal bed net use for a dengue disease model with mosquito seasonal pattern. Math Meth Appl Sci, 41(2):573-592, 2018.

15

V. Capasso and G. Serio, (1978)

A generalization of the Kermack-McKendrick deterministic epidemic model. Math Biosci, 42, 43-61, 1978.

16

P. Chanprasopchai, I. Ming Tang, and P. Pongsumpun, (2018)

SIR Model for Dengue Disease with Effect of Dengue Vaccination. Comput Math Meth Medicine, 9861572, 2018.

17

M. De Lara and L. S. Sepulveda Salcedo, (2016)

Viable control of an epidemiological model. Math Biosci, 280:24-37, 2016.

18

O. Diekmann and J. A. P. Heesterbeek, (2000)

Mathematical epidemiology of infectious diseases. Wiley series in mathematical and computional biology. Wiley, Chichester, 2000.

19

O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, (1990)

On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol, 28:365-

382, 1990.

20

O. Diekmann, M. de Jong, A. de Koeijer, and P. Reijnders, (1995)

The force of infection in populations of varying size: a modelling problem. J Biol Systems, 3(2):519-529, 1995.

21

K. Dietz, (1982)

Overall population patterns in the transmission cycle of infectious disease agents, in Population Biology of Infectious Diseases (R. M. Anderson and R. M.

May, eds. ), Springer, Berlin, Heidelberg, 1982, 87-102.

22

L. Esteva and C. Vargas, (1998)

Analysis of a dengue disease transmission model. Math Biosci, 150(2):131-151, 1998.

23

L. Esteva and C. Vargas, (2000)

Influence of vertical and mechanical transmission on the dynamics of dengue disease. Math Biosci, 167:51-64, 2000.

24

L. Esteva and C. Vargas, (2003)

Coexistence of different serotypes of dengue virus. J Math Biol, 46:31-47, 2003.

25

Z. Feng and J. X. Velasco-Hernandez, (1997)

Competitive exclusion in a vector-host model for the dengue fever. J Math Biol, 35:523-544, 1997.

26

N. Ferguson, R. Anderson, and S. Gupta, (1999)

The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc Natl Acad Sci USA, 96(9):790-

794, 1999.

27

S. M. Garba, A. B. Gumel, and M. R. Abu Bakar, (2008)

Backward bifurcations in dengue transmission dynamics. Math Biosci, 215:11-25, 2008.

28

M. G. Guzman, M. Alvarez, and S. B. Halstead, (2013)

Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhance-

ment of infection. Arch Virol, 158:1445-59, 2013.

29

K. P. Hadeler and P. van den Driessche, (1997)

Backward bifurcation in epidemic control. Math Biosci, 146:15-35, 1997.

30

S. B. Halstead, (2003)

Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res, 60:421-467, 2003.

31

G. Hek, (2010)

Geometric singular perturbation theory in biological practice. J Math Biol, 60:347-386, 2010.

32

M. A. Johansson, J. Hombach, and D. A. T. Cummings, (2011)

Models of the impact of dengue vaccines: A review of current research and potential approaches. Vaccine, 29:5860-5868, 2011.

33

I. Z. Kiss, J. Miller, and P. L. Simon, (2017)

Mathematics of Epidemics on Networks. Springer, 2017.